Class CNNBaseModel
Defined in File cnn_basenet.py
Inheritance Relationships
Base Type
public object
Derived Types
public encoder_decoder_model.dense_encoder.DenseEncoder
(Class DenseEncoder)public encoder_decoder_model.fcn_decoder.FCNDecoder
(Class FCNDecoder)public encoder_decoder_model.vgg_encoder.VGG16Encoder
(Class VGG16Encoder)
Class Documentation
- encoder_decoder_model.cnn_basenet.CNNBaseModel : public object
Subclassed by encoder_decoder_model.dense_encoder.DenseEncoder, encoder_decoder_model.fcn_decoder.FCNDecoder, encoder_decoder_model.vgg_encoder.VGG16Encoder
Public Functions
- __init__(self)
Base model for other specific cnn ctpn_models.
Public Static Functions
- conv2d(inputdata, out_channel, kernel_size, padding='SAME', stride=1, w_init=None, b_init=None, split=1, use_bias=True, data_format='NHWC', name=None)
Packing the tensorflow conv2d function.
- Parameters
name – op name
inputdata – A 4D tensorflow tensor which ust have known number of channels, but can have other unknown dimensions.
out_channel – number of output channel.
kernel_size – int so only support square kernel convolution
padding – ‘VALID’ or ‘SAME’
stride – int so only support square stride
w_init – initializer for convolution weights
b_init – initializer for bias
split – split channels as used in Alexnet mainly group for GPU memory save.
use_bias – whether to use bias.
data_format – default set to NHWC according tensorflow
- Returns
tf.Tensor named
output
- relu(inputdata, name=None)
- Parameters
name –
inputdata –
- Returns
- sigmoid(inputdata, name=None)
- Parameters
name –
inputdata –
- Returns
- maxpooling(inputdata, kernel_size, stride=None, padding='VALID', data_format='NHWC', name=None)
- Parameters
name –
inputdata –
kernel_size –
stride –
padding –
data_format –
- Returns
- avgpooling(inputdata, kernel_size, stride=None, padding='VALID', data_format='NHWC', name=None)
- Parameters
name –
inputdata –
kernel_size –
stride –
padding –
data_format –
- Returns
- globalavgpooling(inputdata, data_format='NHWC', name=None)
- Parameters
name –
inputdata –
data_format –
- Returns
- layernorm(inputdata, epsilon=1e-5, use_bias=True, use_scale=True, data_format='NHWC', name=None)
- Parameters
name –
inputdata –
epsilon – epsilon to avoid divide-by-zero.
use_bias – whether to use the extra affine transformation or not.
use_scale – whether to use the extra affine transformation or not.
data_format –
- Returns
- instancenorm(inputdata, epsilon=1e-5, data_format='NHWC', use_affine=True, name=None)
- Parameters
name –
inputdata –
epsilon –
data_format –
use_affine –
- Returns
- dropout(inputdata, keep_prob, noise_shape=None, name=None)
- Parameters
name –
inputdata –
keep_prob –
noise_shape –
- Returns
- fullyconnect(inputdata, out_dim, w_init=None, b_init=None, use_bias=True, name=None)
Fully-Connected layer, takes a N>1D tensor and returns a 2D tensor.
It is an equivalent of
tf.layers.dense
except for naming conventions.- Parameters
inputdata – a tensor to be flattened except for the first dimension.
out_dim – output dimension
w_init – initializer for w. Defaults to
variance_scaling_initializer
.b_init – initializer for b. Defaults to zero
use_bias – whether to use bias.
name –
- Returns
tf.Tensor: a NC tensor named
output
with attributevariables
.
- layerbn(inputdata, is_training, name)
- Parameters
inputdata –
is_training –
name –
- Returns
- squeeze(inputdata, axis=None, name=None)
- Parameters
inputdata –
axis –
name –
- Returns
- deconv2d(inputdata, out_channel, kernel_size, padding='SAME', stride=1, w_init=None, b_init=None, use_bias=True, activation=None, data_format='channels_last', trainable=True, name=None)
Packing the tensorflow conv2d function.
- Parameters
name – op name
inputdata – A 4D tensorflow tensor which ust have known number of channels, but can have other unknown dimensions.
out_channel – number of output channel.
kernel_size – int so only support square kernel convolution
padding – ‘VALID’ or ‘SAME’
stride – int so only support square stride
w_init – initializer for convolution weights
b_init – initializer for bias
activation – whether to apply a activation func to deconv result
use_bias – whether to use bias.
data_format – default set to NHWC according tensorflow
- Returns
tf.Tensor named
output
- dilation_conv(input_tensor, k_size, out_dims, rate, padding='SAME', w_init=None, b_init=None, use_bias=False, name=None)
- Parameters
input_tensor –
k_size –
out_dims –
rate –
padding –
w_init –
b_init –
use_bias –
name –
- Returns
- spatial_dropout(input_tensor, keep_prob, is_training, name, seed=1234)
spatial dropout implementation
- Parameters
input_tensor –
keep_prob –
is_training –
name –
seed –
- Returns
- Returns
- Returns
- lrelu(inputdata, name, alpha=0.2)
- Parameters
inputdata –
alpha –
name –
- Returns